Mark schemes

| Q1 |     |                                                                                                            |                                                                                                      |   |     |
|----|-----|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---|-----|
|    | (a) | <b>M</b> 1                                                                                                 | $\frac{27}{80} = 0.34$                                                                               | 1 |     |
|    |     | M2 divoino                                                                                                 |                                                                                                      |   |     |
|    |     | IVIZ                                                                                                       | <i>M1</i> some relevant working is needed to arrive at 0.325 - 0.35                                  |   |     |
|    |     |                                                                                                            | no ECF based on <b>M1</b>                                                                            | 1 |     |
|    | (b) | use uv lamp or ninhydrin                                                                                   |                                                                                                      |   |     |
|    |     |                                                                                                            | allow developing / locating agent / iodine                                                           | 1 |     |
|    | (c) | each amino acid has different (relative) affinity/attraction to/solubility in stationary and mobile phases |                                                                                                      |   |     |
|    |     |                                                                                                            | <i>allow</i> reference to different solubility in solvent OR different affinity for stationary phase |   |     |
|    |     |                                                                                                            |                                                                                                      | 1 | [4] |
| Q2 |     |                                                                                                            |                                                                                                      |   |     |
|    | (a) | <u>Conc</u>                                                                                                | HCI                                                                                                  |   |     |
|    |     |                                                                                                            | Allow concentrations of 5M or higher                                                                 |   |     |
|    |     |                                                                                                            | Allow <u>conc</u> sulfuric or <u>conc</u> strong alkalis                                             | 1 |     |
|    | (b) | Using ninhydrin or ultraviolet light                                                                       |                                                                                                      |   |     |
|    |     |                                                                                                            | Allow I <sub>2</sub> (vapour)                                                                        | 1 |     |
|    | (c) | 7 or s                                                                                                     | seven                                                                                                | 1 |     |
|    | (d) | Some of the amino acids did not separate/dissolve with the first/either solvent                            |                                                                                                      |   |     |
|    |     | OR                                                                                                         |                                                                                                      |   |     |
|    |     | Some<br>with 1                                                                                             | e amino acids have the same Rf value or have the same affinity<br>the first/either solvent           |   |     |
|    |     |                                                                                                            | Not amino acids have different Rf values in different solvents                                       |   |     |
|    |     |                                                                                                            |                                                                                                      | 1 |     |

[4]

1

1

3

1

- (a)  $HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$ Allow  $H_2SO_4 + HNO_3 \rightarrow NO_2^+ + HSO_4^- + H_2O$ Allow a combination of equations which produce  $NO_2^+$ Penalise equations which produce  $SO_4^{2-}$
- (b) Electrophilic substitution. Ignore nitration





**OR Kekule** 



M1 Arrow from inside hexagon to N or + on N (Allow  $NO_{2^+}$ )

M2 Structure of intermediate

- horseshoe centred on C1 and must not extend beyond C2 and C6, but can be smaller
- + in intermediate not too close to C1 (allow on or "below" a line from C2 to C6)

M3 Arrow from bond into hexagon (Unless Kekule)

- Allow M3 arrow independent of M2 structure
- + on H in intermediate loses M2 not M3
- (c) D
- (d) (Balance between) solubility in moving phase and retention by stationary phase

OR (relative) affinity for stationary / solid and mobile / liquid / solvent (phase)

1

1

(e) Solvent depth must be below start line Ignore safety 1 (f) 1,2- is more polar OR 1,4- is less polar OR 1,2 is polar, 1,4- is non-polar 1 1,4- (or Less/non polar is) less attracted to (polar) plate / stationary phase / solid **OR** (Less/non polar is) more attracted to / more soluble in (non-polar) solvent / mobile phase / hexane 1 M2 dependent on correct M1 If M1 is blank then read explanation for possible M1 and M2 Allow converse argument for 1,2 No CE = 0(g) Yes - mark on but there is NO MARK FOR YES Mark independently following yes Solvent (more) polar or ethyl ethanoate is polar 1 Polar isomer more attracted to / more soluble in / stronger affinity to the solvent (than before) Penalise bonded to mobile phase in M2 1 [12] Q4. (a) Gas chromatography explanation Different retention times / dipeptides appear at different times. 1 Different balance between solubility in the moving phase / gas carrier and retention by the stationary phase / column OR different relative affinity for mobile and stationary phases. 1 Mass spectrometry explanation Same *m/z* values. 1

(Both) dipeptides / **J** and **K** have same molecular formula /  $M_r$ .

(b) ser-ala

|                   | ala-lys                                                                                                       | 1 |      |
|-------------------|---------------------------------------------------------------------------------------------------------------|---|------|
|                   | ser-ala-lys<br>This order only.                                                                               | 1 | [7]  |
| <b>Q5.</b><br>(a) | Wear plastic gloves:                                                                                          |   |      |
|                   | Essential – to prevent contamination from the hands to the plate                                              | 1 |      |
|                   | Add developing solvent to a depth of not more than 1 cm <sup>3</sup> :                                        | 1 |      |
|                   | Essential – if the solvent is too deep it will dissolve the mixture from the plate                            |   |      |
|                   | Allow the solvent to rise up the plate to the top:                                                            | 1 |      |
|                   | Not essential – the $R_f$ value can be calculated if the solvent front does not reach the top of the plate    | 1 |      |
|                   | Allow the plate to dry in a fume cupboard:                                                                    |   |      |
|                   | Essential – the solvent is toxic<br>Allow hazardous                                                           | 1 |      |
| (b)               | Spray with developing agent or use UV                                                                         | 1 |      |
|                   | Measure distances from initial pencil line to the spots $(x)$                                                 | 1 |      |
|                   | Measure distance from initial pencil line to solvent front line (y)                                           | 1 |      |
|                   | $R_f$ value = $x / y$                                                                                         | 1 |      |
| (c)               | Amino acids have different polarities                                                                         | 1 |      |
|                   | Therefore, have different retention on the stationary phase or different solubility in the developing solvent |   |      |
|                   |                                                                                                               | 1 | [10] |